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Abstract. Calculating and plotting the normalized states of stress for viscous-plastic sea ice models is a common diagnostic for

evaluating the numerical convergence and the physical consistency of a numerical solution. Researchers, however, usually do

not explain how they calculate the normalized stresses. Here, we argue that care must be taken when calculating and plotting

the normalized states of stress. A physically consistent and numerically converged solution should exhibit normalized stresses

that are inside (viscous) or on (plastic) the yield curve. To do so, two possible mistakes need to be avoided. First, to assess the5

numerical convergence of a solution, one must compute the viscous coefficients and replacement pressure from the previous

numerical iterate and the remaining strain rates from the latest iterate. Calculating the stresses only from the latest iterate falsely

indicates that the solution has numerically converged. Second, the stresses should be normalized by the ice strength and not by

the replacement pressure. Using the latter, one obtains converged states of stress that lie only on the yield curve (i.e., falsely

indicating there are no viscous states of stress).10

1 Introduction

Sea ice deformations, associated with the formation of leads, pressure ridges and shear lines, strongly influence the evolution

of the sea ice cover in both polar oceans. As they affect the thickness distribution, sea ice deformations have an important

impact on the exchange of heat, moisture and momentum between the atmosphere and the underlying ocean. To properly rep-

resent these processes in a model, it is essential that rheology, i.e. the relation between applied stresses, material properties and15

resulting deformations is correctly formulated.

Although some authors have recently proposed new sea ice rheologies (e.g., Girard et al. (2011)), most sea ice models are

still based on the viscous-plastic (VP) formulation introduced by Hibler (1979). With the VP rheology, the ice is treated as a

very viscous fluid (creep flow) when the internal stresses are small. However, once the stresses reach critical values defined20

by a yield curve, the ice flows as a plastic material and large deformations (i.e., spatial gradients of the velocity field) can occur.

When evaluating the physical consistency and numerical convergence of a VP solution, researchers often calculate and plot

the normalized states of stress with respect to the yield curve. Unfortunately, they usually do not explain how they calculate this
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diagnostic (e.g. Zhang and Hibler (1997); Hunke (2001); Lemieux and Tremblay (2009); Wang and Wang (2009); Kimmritz25

et al. (2015)). The purpose of this manuscript is to provide a short guide on how to calculate the normalized states of stress for

assessing physical consistency and convergence of numerical solutions.

2 The viscous-plastic sea ice rheology

With the Hibler (1979) VP rheology, the components σij of the stress tensor are given by30

σij = 2ηε̇ij + [ζ − η]ε̇kkδij −Ppδij/2, i, j = 1,2, (1)

where δij is the Kronecker delta, ε̇ij are the strain rates defined by ε̇11 = ∂u
∂x , ε̇22 = ∂v

∂y and ε̇12 = 1
2 (∂u∂y + ∂v

∂x ) with u and v the

components of the horizontal sea ice velocity vector, ε̇kk = ε̇11 + ε̇22, ζ is the bulk viscosity, η is the shear viscosity and Pp is

the ice strength (we follow the notation of Kreyscher et al. (2000)).

35

The formulation of the viscosities depends on the yield curve and the flow rule. In the following, ζ and η are based on the

widely used elliptical yield curve with a normal flow rule (Hibler, 1979):

ζ =
Pp
2∆

, (2)

η = ζe−2, (3)

where ∆ =
[
(ε̇211 + ε̇222)(1 + e−2) + 4e−2ε̇212 + 2ε̇11ε̇22(1− e−2)

] 1
2 , and e is the aspect ratio of the ellipse, i.e. the ratio of the40

long and short axes of the elliptical yield curve.

When ∆ tends toward zero, equations (2) and (3) become singular. To avoid this problem, Hibler (1979) proposed to limit

the maximum values of viscosities which is equivalent to limiting the minimum value of ∆. Hence, ζ is expressed as

ζ =
Pp

2∆∗
, (4)45

where ∆∗ = max(∆,∆min) with ∆min = 2× 10−9 s−1. Note that other approaches for limiting the viscous coefficients have

been proposed (e.g., Kreyscher et al. (2000); Lemieux and Tremblay (2009)).

A drawback of the standard VP rheology is that the term −Ppδij/2 in equation (1) can cause the ice to deform even in the

absence of forcing. To cure this problem, −Ppδij/2 is replaced by −Pδij/2, where P is a function of the strain rates. The50
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simplest formulation of P is

P = Pp
∆
∆∗

, (5)

where P tends toward zero for small deformations while it tends toward Pp for large deformations.

55

P is sometimes referred to as the replacement pressure (e.g., Hunke and Lipscomb (2010)). The use of a replacement method

such as the one described above is now widely used in viscous-plastic sea ice models (e.g., Wang and Wang (2009); Losch

et al. (2010); Hunke and Lipscomb (2010)).

3 Experimental setup60

The divergence of the stress tensor (described in section 2), that is∇·σ, is one of the terms of the sea ice momentum equation.

The momentum equation is discretized in space and in time (see for example Lemieux et al. (2012) for details). It is either

solved implicitly with a solver such as Picard (e.g. Zhang and Hibler (1997); Losch et al. (2010)) or with a Newton-like solver

(e.g. Lemieux et al. (2012); Losch et al. (2014); Mehlmann and Richter (2017)) or it is solved explicitly with the elastic-VP

(EVP) approach (Hunke, 2001) or using the revised EVP with a pseudo-time stepping approach (e.g. Kimmritz et al. (2015)).65

The numerical simulations for this paper were done with the Picard solver of the McGill sea ice model (see Lemieux and

Tremblay (2009) for details). The spatial resolution is 10 km and the time step is 30 min. The model was restarted on January

1st 2002 12 UTC from a long-term simulation. The states of stress were calculated from solutions obtained at the first time

level (i.e., 12h30 UTC). We will discuss later how our conclusions apply to the other types of solvers.70

With a Picard solver, one has to solve a nonlinear system of equations that can be concisely written as A(u)u = b(u) where

u is a vector that contains all the u and v velocity components on the grid, A is a sparse matrix and b is a vector that contains

terms such as the atmospheric stress. It is important to mention that the elements of the matrix A depend on the viscous

coefficients ζ and η and that the vector b contains the replacement pressure P . The idea of implicit solvers such as Picard is75

to solve a series of linearized systems of equations in order to find the solution u of the nonlinear system of equations. This

algorithm can be expressed as

1. Start with an initial iterate u0

do k = 1, kmax

2. Solve A(uk−1)uk = b(uk−1) with a linear solver80

3. Stop if nonlinear convergence is reached
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enddo

where the iterations of this loop are referred to as outer loop iterations (Lemieux and Tremblay, 2009).

85

It is crucial to note that when linearizing the system of equation (for step 2), ζ, η and P are expressed as a function of uk−1.

4 The calculation of normalized states of stress and results

We now discuss how the states of stress should be normalized and plotted in order to assess the physical consistency and the

numerical convergence of the solution. We mean by physical consistency and numerical convergence that the states of stress90

are either inside (viscous) or on (plastic) the yield curve.

Using equation (1), equation (5) and the definition of ∆, one can obtain

P 2
p

(
∆
∆∗

)2

= [σ11 +σ22 +P ]2 + e2
[
(σ11−σ22)2 + 4σ2

12

]
. (6)

Introducing the principal stresses σp1 and σp2 given by95

σp1,σp2 =
σ11 +σ22

2
±
√(

σ11−σ22

2

)2

+σ2
12, (7)

equation (6) becomes

P 2
p

(
∆
∆∗

)2

= [σp1 +σp2 +P ]2 + e2
[
(σp1−σp2)2

]
. (8)

The correct way to normalize the stresses in equation (8) is to divide them by the ice strength Pp. Hence, we obtain

(
∆
∆∗

)2

=
[
σp1 +σp2 +P

Pp

]2
+ e2

[
σp1−σp2

Pp

]2
. (9)100

With σnp1 = σp1/Pp and σnp2 = σp2/Pp we have

(
∆
∆∗

)2

=
[
σnp1 +σnp2 +

P

Pp

]2
+ e2

[
σnp1−σnp2

]2
. (10)

Many authors (e.g., Zhang and Hibler (1997); Lemieux and Tremblay (2009)) have shown that an approximate solution that

has not sufficiently converged exhibits unrealistic states of stress that are outside the yield curve. This is shown in Fig. 1. For
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two (Fig. 1a) or 10 outer loop iterations (Fig. 1b), the solution has not converged and shows unrealistic states of stress. The105

fully converged solution (Fig. 1c) demonstrates physical consistency and numerical convergence. The fully converged solution

was obtained by decreasing the L2-norm of the residual by a factor 1× 10−8. We also recommend the use of the residual for

evaluating the numerical convergence of a solution as states of stress might be inside or on the yield curve even though the

solution has not fully converged (Lemieux and Tremblay, 2009).

110

To obtain the results of Fig. 1 and therefore to be able to evaluate the numerical convergence of the solution, one has to

consider the way the nonlinear system of equations is solved. Hence, the normalized principal stresses in equation (16) should

be calculated from the linearized stresses expressed as

σij = 2η(uk−1)ε̇ij(uk) + [ζ(uk−1)− η(uk−1)]ε̇kk(uk)δij −P (uk−1)δij/2. (11)

In other words, the σij should be calculated from viscous coefficients that are a function of the previous iterate uk−1 and the115

strain rates from the latest iterate uk. These σij are collocated at the tracer point of our C-grid. We now discuss two possible

mistakes that could be done by modelers when assessing the physical consistency and numerical convergence of the solution.

First, let’s consider that one calculates the stresses only based on the latest iterate uk, that is the viscous coefficients ζ and

η and the replacement pressure are functions of uk instead of uk−1. Fig. 2 shows the normalized states of stress that are ob-120

tained in this case after only two outer loop iterations. One might conclude from this figure that the solution has converged

as all the states of stress appear to be VP while we know this is not the case from Fig. 1a. This is important because a "true"

converged solution exhibits better defined sea ice leads (and deformations, Lemieux and Tremblay (2009)), where large mois-

ture/energy/salt fluxes are present between the sea ice, the ocean and the atmosphere.

125

This apparent numerical convergence of the solution is a consequence of the use of a rate-independent plastic rheology. This

can be easily understood by considering a 1D viscous-plastic example. Assuming that sea ice does not have tensile strength and

that it exhibits a large convergent deformation, the 1D relation between the stress (σ) and the deformation (ε̇= ∂u
∂x ) is given by

σ = ζε̇− P

2
, (12)

where ζ = Pp

2|ε̇| and P = Pp for a large plastic deformation.130

Correctly expressing ζ as a function of uk−1 and ε̇ as a function of uk, one obtains

σ =
Pp

2|ε̇k−1| ε̇
k − Pp

2
, (13)
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which is equal to −Pp only once the numerical solution has converged.

135

On the other hand, expressing both ζ and ε̇ as a function of uk leads to

σ =
Pp

2|ε̇k|
ε̇k − Pp

2
=−Pp, (14)

which is always equal to −Pp whatever the velocity field uk used.

A second mistake that could be made by modelers would be to normalize the principal stresses with the replacement pressure140

P instead of using Pp. Hence, if we divide equation (8) by P 2, we get

1 =
[
σp1 +σp2 +P

P

]2
+ e2

[
σp1−σp2

P

]2
. (15)

With σnp1 = σp1/P and σnp2 = σp2/P we have

1 =
[
σnp1 +σnp2 + 1

]2 + e2
[
σnp1−σnp2

]2
. (16)

This is the equation of an ellipse we obtain if the principal stresses are normalized by the replacement pressure. The size145

and the center of the ellipse are therefore fixed. This is indeed what we obtain from a numerical experiment when we plot the

stresses normalized by P . This is shown in Fig. 3 for two (a), 10 (b) and the fully converged solution (c). The normalized states

of stress do not exhibit a realistic solution as all the stresses appear to be plastic. This is what explains the apparent absence of

states of stress in the viscous regime in Fig. 18a and 18d of Wang and Wang (2009).

150

5 Conclusion

We have described how the normalized states of stress should be calculated and plotted in order to assess the numerical con-

vergence and physical consistency of a VP solution. To do so, modelers should avoid two possible mistakes.

First, to evaluate the numerical convergence of an approximate solution, one should calculate stresses from viscous coeffi-155

cients and replacement pressure that are a function of the previous iterate uk−1 and the remaining strain rates from the latest

iterate uk. This conclusion applies to all the implicit solvers. As the EVP and revised EVP approaches include time-stepping

equations for the stresses, one simply needs to calculate the normalized stresses from the stress outputs. This issue of conver-

gence is therefore more prone to occur with Picard and Newton-like solvers.

160
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Second, the stresses should be normalized by the ice strength; not by the replacement pressure. Using the latter causes all

the normalized stresses to lay on the yield curve, falsely indicating there are no stresses in the viscous regime. This issue can

affect the implicit solvers but also the EVP and revised EVP approaches.

This manuscript should serve as a guide on how to calculate the normalized states of stress for assessing physical consis-165

tency and convergence of numerical solutions. It also complements and give more details about one of the sea ice diagnostics

suggested for the CMIP6 sea-ice intercomparison project (Notz et al., 2016).

Code availability. The version (revision 333) of the McGill sea ice model used for the numerical experiments described in this manuscript is

available on Zenodo at http://doi.org/10.5281/zenodo.3530654. The Zenodo deposit also includes the output files for the normalized stresses170

and the Matlab routine used for plotting.
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a)

b)

c)

Figure 1. Principal stresses normalized by the ice strength Pp after two (a), 10 (b) outer loop iterations and the fully converged solution (c).
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Figure 2. Principal stresses normalized by the ice strength Pp after two outer loop iterations. The solution appears to be numerically con-

verged because the σij are only a function of uk.
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a)

b)

c)

Figure 3. Principal stresses normalized by the replacement pressure P after two (a), 10 (b) outer loop iterations and the fully converged

solution (c).
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